采用燃气发生器产生用于驱动涡轮的工质,可使发动机获得更长的工作时间和更高的燃烧室压力,液体燃气发生器的燃气既可驱动共用的涡轮,也可同时驱动氧化剂涡轮与燃料涡轮。同时驱动氧化剂涡轮与燃料涡轮的方案在J-2,HM-60和LE-5等发动机中得到应用。在LE-5发动机中,发生器产生的燃气先进入液氢涡轮泵的涡轮,然后进入液氧涡轮泵的涡轮。
工作特点编辑
(1)燃气温度低。一般为650〜900°C,主要取决于涡轮叶片材料的许用温度。
(2)余氧系数偏离化学当量的余氧系数。通常采用富燃的低余氧系数,优点是燃气与室壁的相容性好;燃气产物的分子量低,做功能力较大。四氧化二氮/偏二甲肼等自燃推进剂的燃气发生器,余氧系数为0.05〜0.08,质量流量密度为20〜80g/(cm2·s)。发生器的流量占发动机总流量的2%〜3%。
(3)集中燃烧。富燃的发生器,其氧化剂喷嘴排列在喷注面的中心区,与相邻的燃料喷嘴组成较高的余氧系数。边区只有燃料喷嘴。保证可靠的点火,稳定燃烧,防止出现低频不稳定燃烧。
(4)停留时间长。一般为5〜12ms,以保证出口温度均匀,避免燃气局部温度升高,烧蚀涡轮叶片。自燃推进剂的停留时间选择小些,而液氧/煤油非自燃推进剂的停留时间选择大些。
燃气发生器的设计应当考虑到:
(1)在喷注面中心区,选择较高的余氧系数。四氧化二氮/肼类燃料,中心区的余氧系数α≈0.12~0.20。保证可靠点火,持续稳定燃烧;
(2)选择较高的喷嘴压降,改善雾化混合质量,防止出现低频不稳定燃烧;
(3)选择足够的停留时间,保证燃气的出口温度均匀;
(4)力求结构简单、可靠。燃气发生器作为一个独立的组件进行装配焊接,液压液流试验。它可以单独的进行热试,以考验和评定启动点火和稳定工作的可靠性。
燃气发生器是适用于航空航天、舰船、石油及汽车工业等领域的燃气生成装置,具有应用范围广、种类多等特点,受到了各行各业的关注。通过对国内外的大量文献进行分类总结,分析了燃气发生器的应用研究领域。根据其工作原理进行了分类,系统阐述了各类燃气发生器的工作特点及研究进展,对各类燃气发生器在应用过程中存在的技术难点和发展前景进行了简要分析。