要研究一个电子的运动,严格说来,必须写出这个包含大量原子核及电子的多体系统的薛定谔方程,并求出此方程的解。但是要求出其严格解是很困难的,通常采用单电子近似方法,把多体问题简化为单电子问题进行研究。这种近似方法包括两个步骤:步,假设晶体中的原子核固定不动,好象静止在各自的平衡位置上,把一个多体问题简化成一个多电子问题;第二步,假设每个电子是在固定的原子核的势场及其他电子的平均势场中运动,把多电子问题简化为单电子问题。用这种方法研究晶体中的电子运动,表明晶体中电子许可的能量状态,将不再是分立的能级,而是由在一定范围内准连续分布的能级组成的能带(称为允带)。
没有掺杂杂质的半导体称为本征半导体,其中电子和空穴的浓度是相等的。而为了控制半导体的性质需要人为的在半导体中或多或少的掺入某种特定杂质的半导体,称为杂质半导体。当杂质为施主型杂质(起施放电子作用)称为N型半导体,当杂质为受主型杂质(接受电子而产生空穴)称为P型半导体。
多晶硅和单晶硅的差异主要在物理性质方面,例如在力学性质、电学性质等方面,多晶硅不如单晶硅。多晶硅可作为控制单晶硅的原料,也是太阳能电池和光伏发电的基础材料。单晶硅可算的是世界上纯净的物质了,一般的半导体器件要求硅的纯度在6个9(6N)以上。大规模集成电路的要求更高,硅的纯度必须达到9个9(9N)。目前,人们已经制造出纯度为12个9(12N)的单晶硅。
已能集成4000多万个晶体管。这是何等精细的工程!这是多学科协同努力的结晶,是科学技术进步的又一个里程碑。
微电子技术正在悄悄走进航空、航天、工业、农业和国防,也正在悄悄进入每一个家庭。小小硅片的巨大“魔力”是我们的前人根本无法想象的。