硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。
简单来说,在其他参数相同或者差不多的情况下,内存和带宽综合决定终某个硬件在Aleo项目上的算力大小。
带宽这个概念估计很多人不是很了解,之前只是关注显存,虽然说目前Aleo官方还没有正式公布的PoSW算法,但是从目前的表述来看把NTT/FFT这个漏洞堵上是个必然,而且本身零知识证明算法是对NTT/FFT有要求的。
在分析之前,我们先看一下ASIC(Application Specific Integrated Circuit),中文全称是“专用集成电路”。这里特别强调“专用”,“专用”意味着针对单一项目来说会更加有竞争力。相对比,GPU(显卡)是通用计算处理芯片,所以在单一项目上来说“专用”肯定比“通用”更有竞争力。
早在2021年,英伟达就曾公开表示过“禁止使用转换层在其他硬件平台上运行基于CUDA的软件”,2024年3月,英伟达更是将其升级为“CUDA禁令”,直接添加在了CUDA的终用户许可协议中,已禁止用转译层在其他GPU上运行CUDA软件